PIETECH Page 11, PIE 4.6 Eccentric Drive Gearing

12/23/20 PIETECH Page 11, PIE 4.6 Eccentric Drive Gearing

I was going to be putting my effort into duplicating the dead blow weight so that I can test the first wheel with 2 weights, and I can build a second wheel to go with the first one. However, when I was doing the propulsion testing with the single wheel, I noticed that as by battery started running down propulsion was diminishing. This was found to be a “slow-down” of the motor during the critical “power-stroke” (those who have read my manual know what that means) causing propulsion loss. To compensate, I manually turned the knob on the speed controller during slow speed operation. Naturally, I did not meet the correct RPM every time, but I noticed that if I overshot the running RPM at exactly the right moment, the PIE 4.6 would lurch forward much stronger.

A friend of mine, who also has been working on his own inertial propulsion drive (YouTube Channel) and I were discussing this. It has been found that changing the time base in mid or quarter turns of the main wheel could enhance the propulsion effect dramatically.

My choices for this concept are to either electrically change the RPMs back and forth or use eccentric gearing to smoothly transition the RPMs thus changing the time base. In the end I may try them both or perhaps someone could find a better method.

For now, I have started this experiment with the eccentric gear setup. Eccentric gears are essentially a pair (or more) of identical gears or sprockets, with their axle’s not on center in the exact same amount. Since each will “wobble” exactly the same amount, they can be meshed together. When one it rotated at a steady RPM by an outside source (electric motor, etc.) the other one accelerates through half of its rotation and decelerates through the other half.

Eccentric Gear (Sprocket) Set

So, for my experiment I have 2 identical sprockets, each mounted on-center and each on a bearing. Then there are two more identical sprockets fastened parallel with the first ones, each mounted exactly the same amount off-center. The two off-center (or eccentric) sprockets are timed and connected together with roller chain.

Sprocket set 1 is driven by the electric motor. Sprocket set 2 is connected to the PIE 4.6 wheel. As the motor turns at a steady RPM, the PIE 4.6 is accelerating and decelerating constantly. This is timed to start the acceleration approximately halfway through the portion of the cycle when the weight is in contact with the center (inner stop) axle. Timing here is very important and even a few teeth off on the sprocket to wheel timing makes a huge difference. In fact, it has been observed that with the timing off too much, the unit would oscillate forward AND back with significant force.


Eccentric Drive Ready For Testing (Timing Was Not Correct In Picture)

Eccentric Drive Testing (Yellow Marks are for Timing Reference)

Eccentric Drive Testing (Yellow Marks are for Timing Reference)

I know that this design will not be well suited to having multiple weights on the wheel, but I do have a goal in mind that I am not ready to introduce just yet. If this idea works out, it would be capable of enhancing the operation of any of the PIE versions.

Demo of Eccentric Gears Driving the PIE 4.6

The downside is; if I only have 1 weight per wheel the RPM is limited due to transverse (sideways) forces threatening to tear it apart.

First Propulsion Bench Test for PIE 4.6

I had intended to wait and do the first true propulsion test on the 4.6 on a proper set of bearings or wheels, but I found myself with a few minutes of free time so I went into my lab area to think about “next moves” & decided that I simply wanted to see it move on its own.

So, it was nothing fancy and the battery was not “riding” along with it. No numerical data was recorded either. I simply placed two short (about 12”) lengths of ½” (12mm) conduit under the PIE 4.6 which would allow it to move freely forward and backward.

PIE 4.6 First Propulsion Test

The RPMs were slowly brought up from zero and as soon as the weight started to swing properly the PIE 4.6 moved forward only, and with a great deal of authority. I was VERY pleased, and I was truly amazed at the lack of backward movement which I am attributing to the dead blow design. I will be posting a video very soon (might be posted by the time this is being read) so please check my YouTube & BitChute channels. https://www.youtube.com/user/stclairtechrd  and https://www.bitchute.com/channel/miGkQfBM24NZ/

I will be making a couple more of these amazing Dead Blow Weights with its attached Guide (DB-G) as soon as possible so that I can see if the 4.6 will still move properly with multiple planet gears using the DB-G. From there, multiple wheels would be on the agenda along with experimentation much like those performed with the 1.0 and 2.0 such as synchronous rotation vs. counter-synchronous rotation etcetera.

It has been mentioned that the slow progress and multiple videos posted with little success tend to be frustrating. This is the methodology employed by the scientific community and by professional Model Makers worldwide.  Even though I know what I want to build, taking these slow and methodical steps allow me to eliminate component designs with inferior performance and focus on those designs with more promise. The more successful designs, to which I am adding the PIE 4.6, are the fruit of this painfully slow methodology. Regardless of anyone else’s personal beliefs (all are welcome to their own beliefs) I also acknowledge a divine inspiration fueling my own personal path of growth in this lifetime.

PIETECH Page 9 – PIE 4.5 With New Dead Blow Type Weight

The latest test of the PIE 4.5 is using a 1 kg dead blow type weight. The weight is a steel box with steel shot (BB’s) inside it. It appears to have a lot of promise, as there is virtually no “bounce” when the weight hits the inner stop, and it seems to be dampened where it would contact the outer stop if it had one (has not been installed).

PIE 4.5 with Dead Blow
Dead Blow Weight Installed On PIE 4.5

There is a video of this first testing on YouTube and BitChute. The problem however remained that the centrifugal force and impact force did not push in the same direction, which was the reason for Thornson’s “Inner Planet Trap” which would hold the weight and release at the correct time.

The answer is to install a “guide” on the end of the weight which would keep the weight near the center axle and correct the problem of thrusting in two different directions. This is proving , so far, to be a much improved design. This can also be seen on YouTube and BitChute.

Guide Fastened to Dead Blow Weight

These improvements are now bringing the PIE version up to “PIE 4.6”.

PIE 4.6 – Dead Blow Weight and Guide

Check out the videos on YouTube and BitChute & thanks for watching!

https://www.youtube.com/user/stclairtechrd

https://www.bitchute.com/channel/miGkQfBM24NZ/

PIE 4.5 and My Original Thornson Drive Replication

Hi everyone and welcome to my blog’s new home. I hope that this venue will be of at least the same quality as before, and I really hope that the text is a bit easier to read!

I posted a video on YouTube & BitChute of the PIE 4.5 with 3 gears, 2 gears and just one planet gear on it. There is a bit of controversy as to which is better and what configuration should be considered for the PIE 4.5 to continue. Watch the video and you can plainly see the lack of propulsion with better balance (3 planet gears), and much better propulsion with a fully unbalanced wheel (1 planet gear). Of course, getting rid of the jerking nature of the drive is a primary goal along with stronger propulsive force.

I have gone back and reviewed my recorded data, and videos, going all the way back to the very first truly functioning drive still being referred to as a Thornson Drive even though the stop modifications were already being changed and modified to the design finally used in the PIE system. The wheels (4 of them) all had a single planet gear, they were all running more or less in-sync, and it just plain worked. I am going to put the 3 videos I have of this original unit together into one video and post in soon.

Keeping this in mind, and knowing that I really can get a MUCH stronger forward pulse without increasing the back pulse, the goal remains to pulse smoothly (an oxymoron). For this plan to work, I need 2 or more complete PIE units that produce fairly equal amounts of force and that can run in-sync (with a calculated offset) without actually being physically mounted to the same frame.

Stay tuned to this blog and my video channels as I think some exciting things should be happening soon!