The PIE 5.0 does work! It is not as good as I was hoping, but it does show just one more way this “impossible” propulsion becomes possible! The things learned by actually putting hands to work in the shop far outweigh the mainstream physics falsehoods still perpetrated in many (or most) of our “higher learning” institutions.
What I am about to say is considered “heresy” in the “religion of science”:
Science is supposed to be available to everyone.
Science is supposed to be FUN.
Scientific information is supposed to be openly available and shareable.
Science and physics are supposed to be shared and debatable among all of us, not just the PhD’s. PhD’s who unfortunately tend to believe what they were taught in their final years of education, which is that their Graduate Degree somehow makes them “better” than everyone else. Science is not supposed to discriminate, science (by definition) is to “observe” with an open mind, not “dismiss” with no regard to the idea of actually learning what is possible.
That said, the PIE 5.0 did work, but just not as well as I hoped but that is actually a large part of what makes testing it successful! Every test, every build, every experiment, every failure, every debate & every argument lost has taught me something and makes me who I am today!
The data and understanding gained from development of all of the PIE versions (including the PIE 5.0) is now being poured liberally back into the Trammel Engine project with a renewed enthusiasm! That alone is worth the time spent planning, laying out, building, and testing! And as a bonus, it is “fun“!
More to come soon, please check back here for updates!
So the first successful test of the PIE 5.0 concept is in the books! Although it is only a bench test with one “wheel”, built on the PIE 4’s frame, and sitting on roll pipes, there is no doubt that there is strong forward thrust with reversion at a level of “little to none”.
Adding more weight will definitely increase thrust as seen in experiments completed. An increase of RPM may also increase thrust, but that has not been experimentally confirmed.
So, what is the big deal with the PIE 5.0? No sun gear! No planetary gears! No impact zones! No stops to get broken!
What does this serve to accomplish? Less noise! Less potentially damaging pounding! Longer thrust pulse duration! No need for a pivot point to swing the weight! Virtually no reversion!
The one thing I struggle with is the need to make this work public while also wanting to build a business around it. Conventional thought says that it needs to remain secret, while every fiber of my being screams “make it public”. With guidance from above, I have built this, & with that same guidance will come the reveal.
Below is a photo of the first tested prototype. Much continues to change so more details will be added as work progresses.
It has been a long summer of trying to balance my time in my workshop/lab and my career as a Parts Associate, now promoted to Supervisor. Sometimes I think that I must be doing a good job, but there are some difficult days when I think that I am the supervisor because nobody else wants the headaches…
Trammel Update: The Trammel Engine has been rebuilt over and over and now 99% of the internal motion is now working as expected. There are internal components I call con-rods (connecting rods) which only pull and never push, then there are push-rods which can only push and cannot pull. The con-rods are now of a very strong design and their length is adjustable. We had multiple con-rod failures until this design was implemented.
The problem appears to be with the push rods. It was originally thought that their purpose was more of “timing” between the lower halves of the motor, so they would only need to basically “take up slack” with a spring load. This now appears to be incorrect. It seems that they must actually provide a “hard stop” which only pushes but cannot pull. Springs will still be used, but more as an ant- rattling device (I think).
The constant trial runs and failures precipitating rebuilds and repairs have really taken their toll on me mentally… I need a freakin’ win for crying out loud! So I am now (on an opposite workbench) building a PIE 5.0! It is a culmination of PIE and Trammel knowledge gained over the last 3 years and preliminary tests are incredibly promising.
It is still an ugly “Frankenstein” of a machine, but I will post pictures as it becomes something to look at! The good news is that even though it is still in the earliest stage of development it is already making pounds of thrust (too bad NASA)! With one wheel! With one weight!
Sorry I don’t have pics yet of the PIE 5.0…
Our web site (http://stclairtech.tech) is revamped and rebuilt with new fresh graphics and a much nicer interface which is easy to navigate. I also have a page showing some pictures of UAPs (UFOs) over the St. Lawrence River on the US & Canadian border. The pics show black, odd-shaped objects in the air which might be explained away as birds or insects, but they are 100% real photos of objects which only show up on the digital camera! These are completely invisible to the naked eye! See these photos here: http://stclairtech.tech/UAPs/
Thanks for reading and following along… Talk to you again soon!
It has been MONTHS since I updated here… A lot has happened in my life and in the shop! For those interested, I have switched gears in my professional life. Since the change is quite dramatic, I have been under some stress “getting in the groove”, but it is a needed change and I’m getting it all figured out.
The PIE X aka Trammel Engine is coming along. Inside it (still not ready to reveal too many details) are some components which were made too weak, but they have been rebuilt and replaced with much more robust pieces! I have experienced some intermittent thrust and have kept moving forward with this as much as possible. I also recently received a much-improved motor and speed controller which is now installed.
It has become quite evident that as I contact potential business partners and investors, I need a small and lightweight demonstration model which can be taken along to those meetings. With that in mind, I introduce the “PIE Mini”. The PIE Mini is a nearly complete, single weight, working, demo model which is really small and light with plastic gears and a hollow tube instead of a large “wheel”. It’s power source is a super cheap cordless screwdriver from Harbor Freight. Although it is intended to be a portable demonstration device.
I believe it will also be a design which could become the first model of a sellable working model for science minded people everywhere to experiment with.
There are a couple of videos of the PIE Mini on BitChute .
I have also now run a live demo of the Mini at the APEC conference on Feb. 27, 2022. During this presentation I showed that the unit actually needs mass to operate and that is really it’s only environmental prerequisite. I should be posting that presentation on my BitChute and YouTube channels very soon. Until then, here is a link to it on the American Antigravity YouTube channel.
I want to thank Ross Small for joining the video conference with a presentation of his own. He is building a “linear thrust” machine in the hopes that it will be a helpful learning aid for everyone to better understand the mechanism of inertial propulsion. Some of those very principals are integral to the Trammel Engine, and have also got me thinking about other, future, design builds.
On 7/31/2021 the counter rotating PIE 4.8 was re-phased to have the planet gears synchronized (self-propulsion mode) but then one plant gear was removed from each wheel so that forward pulses will alternate from on side to the other. The non-functioning weights were fastened to the planet gear mounting holes to help balance the wheels a bit.
Results were very similar to having all the planet gears and weights in place and operational with road testing showing a 4% to 6% reduction of engine load at the standard speed of 55 MPH with little to no headwind.
I believe this poor performance may be due to the counter-rotating wheels. Previous testing has shown better thrust using co-rotational wheels (rotating in the same direction). It has been suggested that counter rotation might be needed for stability, especially in either an air or space (aerospace) vehicle, but co-rotation should be very possible with proper management using either air foils or gyroscopes. Co-rotation should still be quite manageable a with minimum amount of manipulation.
8/10/2021 Update
I have now rerouted the chain on the PIE 4.8 so now the Left and Right wheels both turn clockwise, and I have modified the ramp on one of the RH wheel’s weights for the direction change and timed the wheels for self-propulsion (synchronized). With just one weight on the right wheel and two weights on the left wheel I now see that it is a definite improvement over the counter rotating wheel setup!
The first noticeable difference between counter rotating and co-rotating is when counter rotating in this same configuration of 2 weights on left and one on the right the propulsion pulse was strong when a single weight pulsed and weak when two weights synchronously pulsed. With co-rotating wheels the propulsion pulse is strong when a single weight pulsed and doubles in strength when two weights pulse synchronously. In simple terms, the unit is stronger when co-rotational!
I need to put trolley wheels under it again to test properly on the bench, but the unit seems strong and is pulling itself (sliding forward) across the bench when running even without fine tuning the gear timing. Next, I will adjust the gear timing and modify the other weight for clockwise rotation so that I can complete this round of testing.
If there was lots of extra time to do extensive testing it would be best to build it with 4 wheels, two co-rotating and two countering them to be able to arrange them in different ways to record and study the results. I don’t feel it is necessary at this time as the testing I have done is more than adequate to demonstrate the workability of the PIE system.
I have discussed the origin of the SDC and the subsequent positive effects of its use, and when I was setting up the PIE 4.8 to co-rotate, I could visually see the point of heavier motor load in the PIE’s rotation. So I published a short video of this visually obvious effect demonstrating the position in rotation which needs the RPM boost using the Speed Differential Control (below).
Well now, it seems that with the openness of the experimentation, building, fabricating, and functional videos that the “it doesn’t work” folks have become “it only works because of” folks.
The better we get this working, and the more verified data there is, the more people keep coming up with reasons they think we get propulsion. Primarily this presumptive opinion input has revolved around friction. The common theory is that “contact” with virtually anything is the friction causing propulsion. I cannot say that anything is impossible, but short of tossing this thing out into space it will be nearly impossible to “disprove” that theory! Here is my position on this… “Who freaking cares?!?!?!” It just works, so let us expand on this and put it to use for the betterment of EVERYONE!
I get it that the super smart technical theorists believe that anything that isn’t incredibly complex simply cannot work. Sorry people, but that is just another false theory which has been mistaken as fact.
Mine is NOT the only system that works, mine is not the only tech that needs to be openly replicated. If the replications are done with an expectation of failure, it will most likely fail. If they are done with an open & optimistic attitude with an expectation of recording valuable data, extraordinary things are possible!
I have recently published the video on YouTube and BitChute of the first round of Dual-Wheeled testing with fully independent asynchronous control of each wheel (CW & CCW rotating). More testing videos will be published, and a comprehensive report will be published when these tests are complete. That video is visible below.
I have been actively experimenting and building “stuff” for many years. Some of this “stuff” was really never meant to see the light of day or at least never to be “reviewed” by “academia”, it was done for the sheer joy of creating something new and unique. Now that one of these creations has progressed to the point where it becomes something profoundly useful, academia is pushing back harder than ever… Even with a functional prototype right in front of them, the PhD scientists are quick to expound their firm belief stating loudly “that’s not possible” and accusing anyone involved in any way of being a “charlatan”, a “fake”, or a “scammer”.
Just like the idea of “perpetual motion” or “zero-point energy”, “inertial propulsion” is seen as a direct threat to everything they have been taught and what they have been taught to stand for. Anyone even open to the idea is immediately labeled as a “fraud” and is no longer welcome anywhere near the circles of the “scientifically advanced” or “real” scientists (as they consider themselves).
It has even been publicly stated that “there is no longer a place for the ‘garage inventor’ because there is nothing more they can contribute to science”… HOGWASH! Science has become a cult of “elitists” who are so self-absorbed that all others are too far beneath them to be of any value as human beings…
I have (unfortunately) come into direct contact with these “elitist PhD’s” and have simply learned make peace with this bullshit. Now as people around me are starting to experience the ostracism there seem to be a couple of choices presented. One choice is to “roll over” and “take it up the a$$” by simply shutting up and going away. Another is to “avoid contact” with the elitists and quietly keep working. The third is to “stand and fight” against the system and the elitists running it.
No matter your personal decision, my advice (for what its worth) is to “stay true to what you believe in” BUT always “pick your fights wisely”! That is it… You may choose to avoid conflict and stay “safe”, but if you do choose to “stand-up” to the elite authority, do so wisely and do not expect to unilaterally “win”! Accept the small victories with graciousness, and consider the failures as “learning experiences” the same way we do in the lab or the shop!
Sorry to get so serious… Now I need to get back to work, and do what I do best building stuff… Thanks for reading this!
–The PIE 4.8 is ready to test with two counter rotating wheels. The two wheels are fully independent with their own identical speed controllers and motors. They are fastened together on a 2X4 frame, and initial testing will be on wheels followed by on-road testing. The photo has the assembly sitting on a work cart. That cart is not stable enough to run the PIE on, but it is enough to load/unload it from its transportation, and carry it between test stands.
I am now actively building more weights and components for the counter rotating wheel assembly. As we have seen before, the PIE design works better with two wheels but this is the first one that has “self-propelled) with just one wheel. I think it will be very interesting to see it work with a second wheel, especially a counter rotating one.
If I do decide that I do not want it to counter rotate, the weights can be modified by just grinding the welds for the ramp brackets that I welded to the side of each one. The pivots are being made to work with the stops in either direction. The other pieces that would need changing are really just the actuators for the switches, so it would not be a super big deal.
It has been a little while since the first half was built, so I did have to go back and look to make sure the new weights match the original ones in both size and weight. Eight 2X2X3/8″ steel squares, two 1-1/2X3X1/16″ rectangles, a block to hold the pivot bushing and the bushing itself. Once the basic box is made, the BB’s are added to complete the weight measurement and make it a dead blow. I thought they were 2 kg each, but I actually had to weigh one to be absolutely certain! Once the BB’s are added, the top is welded on, and it will need a coat of paint.
The wheel is already constructed, as is the sun gear, so some of the most time-consuming work is already done.
I will update the blog here, as it all progresses.
It has been a while since my last update. I guess I kind of went down a bit of a rabbit hole looking for answers to the reversion issues that virtually all inertial drives have. The answers I found are useful, and everything learned has value!
My search took me through the world of compound levers, offset drives and finally to the Tolchin/Shipov drive. The T/S drive taught me the most as it uses some of the same principals necessary in virtually ALL inertial drives, which is adding the 4th “D” (Dimension) to a gyroscopic arrangement.
4D Gyroscopes: Everyone (basically) learned about 3D in grade school. Height, depth and width or in machine shop geometric algebra, X, Y and Z axis or dimensions. The 4th D is T, or time. Time in a spinning gyroscope is measured in RPM, or revolutions per minute. Adding the 4th “dimension” to a gyro is done by rapidly and purposefully changing the RPM faster AND slower, generally within a single revolution.
If you were to view a conventional toy-type gyroscope, you will notice a frame surrounding the flywheel and a smooth-rimmed flywheel in the center. Now, use a marker (pencil or crayon is fine) and put one dot on the rim of the flywheel. That is now our reference point. Place the gyroscope so you can see the entire rim of the frame and the rim of the flywheel. Place a mark on the frame at the top and the bottom as you are viewing it (right and left work too) and then using your finger turn the flywheel rapidly from one mark to the next, then slowly from that mark back to the beginning. That is the 4th D!!!
Imagine spinning the flywheel at 1000 RPM but installing a mechanism that will slow it to 800 RPM for one-half of each revolution, returning it to its original velocity for the other half, and you have a 4D gyroscope!
Now replace the dot on the flywheel with a small weight, and spin it fast then slow then fast then slow with every revolution one-half of it is moving fast and one-half moving slower. It might not be exactly what you desire, but there WILL be inertial propulsion derived from that device!
It is not about shuttling weights around; it is all about changing the “time base” by rapidly changing speeds during EVERY revolution! Shuttling weights can be part of that and quite often they are, unfortunately many people believe that the weight shuttling causes propulsion, when in fact it is only a component of the gyroscope that can be time-manipulated into performing propulsive work. This can be accomplished mechanically or electrically, and although those two systems may appear fundamentally different, they are like the difference between a diesel and a gas engine, they may be “fed” fuel differently and the ignition of that fuel is done differently they are still a piston & crankshaft engine (there are also rotary and turbine but I’m not going there right now).
So, keeping in mind that there are different ways of accomplishing the same basic task, I am back to the PIE 4.7 with a renewed outlook and it is definitely time to “Git ‘Er Done”!
As the PIE project continues, I am not blind to reality. There are still many shortcomings to be overcome, forces within the PIE assembly which fight themselves and therefore fight against the very purpose of the PIE. “Reversion” is “anti-propulsion” and it is the bane of all inertial propulsion systems, a primary force to be circumvented as it cannot be eliminated. In the quest for circumvention there is a relatively simple sounding answer known as “redirection”. There is a type of device which has purported to have redirected reversion with good efficiency invented by a Russian named Tolchin and redesigned by another named Shipov. Because this Tolchin/Shipov (T/S) design effectively used redirection within a narrow band of geometric proportions, and because the mechanicals of the T/S drive are less complex than that of the PIE, I have allocated a bit of time and resource to verify T/S drive operation. Assuming the device is verified, a small T/S could be used as an anti-reversion device with the PIE and with other strong impulse drives as well.
Tolchin vs. Shipov: The Tolchin drive was originally fully mechanical with a spring motor and mechanical governors and brakes to build forward momentum and then partially nullify reversion. Once Shipov came into the picture the mechanical controls were replaced with electrical controls. I believe either would be effective, but electrical is easier to adjust and modify so that is the route my experimental work is following at this time.
Noteworthy Difference: There is one other noteworthy difference! The Tolchin drive appears to have lacked the precision of the Shipov drive. Watching the videos of the Tolchin vs. the Shipov, Tolchin used one moveable mechanism inside another to lessen the reversion. The inside mechanism moved forward and back “pulling” the main trolly with what appear to be rubber bands. The inner mechanism may also be angled downward slightly to use gravity as an integral part of the cycle. Shipov eliminated these considerations with precise braking control of the rotating assembly.
The Tolchin/Shipov drive cycle explained:
The T/S drive has 2 halves and they are identical mirror images of each other so I will only focus on 1/2 of the drive. I will be using clock positions of the weights for clarity. The rotation in this explanation will be clockwise to follow the numbers and 12 o’clock is straight forward.
1: At 12 the weight is moving at base speed.
2: At 1:30 (60 degrees) the weight is accelerated to approximately 2X to 3X the base speed (power stroke).
3: At 5:30 (30 degrees from center measured at the bottom) the weight returns to base speed.
4: The weight continues at base speed on around to 12 and starts over.
Since the acceleration force is designed to occur within a 90-degree arc (1/4 revolution), the forward thrust needs to be more than the reverse thrust used in returning the weights to the front. This is simple but stopping the acceleration (accelerated speed) at the exact right moment is critical if the T/S drive is to function!
Current: Right now, the gearing is put together and I am currently powering it with an obsolete cordless drill mechanism. Speed control is accomplished with the same controller being used on the PIE 4.7, including the SDC control.
Problem: The problem with my replica is the weight’s return to base speed is not instant, and because the rotation is still moving too fast (and overshoots the desired slow-down position) the centripetal force pulls in the wrong direction. A brake is needed to quickly (instantly if possible) slow the rotation speed back to base speed. I believe this might be accomplished with a “motor brake” working similarly to a modern cordless drill which stops without coasting when the trigger is released. Another thought is that my weights are too heavy for the older model drill motor to effectively decelerate quickly, and they may need to be replaced with lighter weights.
Gyro, Centrifugal, Centripetal? Shipov called this a “4D gyroscope” where the 4th dimension is time (rotation speed), but it could also be called a “centripetal drive” since thrust is derived by accelerating the weights in an arc toward the rear, and then the centripetal energy is absorbed by reducing speed at the moment the direction is perpendicular to desired motion. Since the mirrored half is doing the same thing in the opposite direction, sideways force is cancelled at both the acceleration point and deceleration point.