PIE 4.8 Testing- and -Doubters, Debunkers, and Haters:

Well now, it seems that with the openness of the experimentation, building, fabricating, and functional videos that the “it doesn’t work” folks have become “it only works because of” folks.

The better we get this working, and the more verified data there is, the more people keep coming up with reasons they think we get propulsion. Primarily this presumptive opinion input has revolved around friction. The common theory is that “contact” with virtually anything is the friction causing propulsion. I cannot say that anything is impossible, but short of tossing this thing out into space it will be nearly impossible to “disprove” that theory! Here is my position on this… “Who freaking cares?!?!?!” It just works, so let us expand on this and put it to use for the betterment of EVERYONE!

I get it that the super smart technical theorists believe that anything that isn’t incredibly complex simply cannot work. Sorry people, but that is just another false theory which has been mistaken as fact.

Mine is NOT the only system that works, mine is not the only tech that needs to be openly replicated. If the replications are done with an expectation of failure, it will most likely fail. If they are done with an open & optimistic attitude with an expectation of recording valuable data, extraordinary things are possible!

PIE 4.8 First Test Setup

I have recently published the video on YouTube and BitChute of the first round of Dual-Wheeled testing with fully independent asynchronous control of each wheel (CW & CCW rotating). More testing videos will be published, and a comprehensive report will be published when these tests are complete. That video is visible below.

PIE 4.8 Nearing Test Mode, Science Elitists and Bucking the System, The Dark Side of Science?

I have been actively experimenting and building “stuff” for many years. Some of this “stuff” was really never meant to see the light of day or at least never to be “reviewed” by “academia”, it was done for the sheer joy of creating something new and unique. Now that one of these creations has progressed to the point where it becomes something profoundly useful, academia is pushing back harder than ever… Even with a functional prototype right in front of them, the PhD scientists are quick to expound their firm belief stating loudly “that’s not possible” and accusing anyone involved in any way of being a “charlatan”, a “fake”, or a “scammer”.

Just like the idea of “perpetual motion” or “zero-point energy”, “inertial propulsion” is seen as a direct threat to everything they have been taught and what they have been taught to stand for. Anyone even open to the idea is immediately labeled as a “fraud” and is no longer welcome anywhere near the circles of the “scientifically advanced” or “real” scientists (as they consider themselves).

It has even been publicly stated that “there is no longer a place for the ‘garage inventor’ because there is nothing more they can contribute to science”… HOGWASH! Science has become a cult of “elitists” who are so self-absorbed that all others are too far beneath them to be of any value as human beings…

I have (unfortunately) come into direct contact with these “elitist PhD’s” and have simply learned make peace with this bullshit. Now as people around me are starting to experience the ostracism there seem to be a couple of choices presented. One choice is to “roll over” and “take it up the a$$” by simply shutting up and going away. Another is to “avoid contact” with the elitists and quietly keep working. The third is to “stand and fight” against the system and the elitists running it.

No matter your personal decision, my advice (for what its worth) is to “stay true to what you believe in” BUT always “pick your fights wisely”! That is it… You may choose to avoid conflict and stay “safe”, but if you do choose to “stand-up” to the elite authority, do so wisely and do not expect to unilaterally “win”! Accept the small victories with graciousness, and consider the failures as “learning experiences” the same way we do in the lab or the shop!

Sorry to get so serious… Now I need to get back to work, and do what I do best building stuff… Thanks for reading this!

–The PIE 4.8 is ready to test with two counter rotating wheels. The two wheels are fully independent with their own identical speed controllers and motors. They are fastened together on a 2X4 frame, and initial testing will be on wheels followed by on-road testing. The photo has the assembly sitting on a work cart. That cart is not stable enough to run the PIE on, but it is enough to load/unload it from its transportation, and carry it between test stands.

PIE 4.8
PIE 4.8 CW & CCW Rotating Wheels Ready for Testing Together

PIE 4.8 Dual Assembly

PIE 4.7 is now the PIE 4.8 with Thrust Test Video

The PIE counterclockwise wheel (CCW) is nearly finished and will be tested very soon. I made a significant change to the “outer stop” which works so well to warrant changing up the model number to PIE 4.8 and I am installing them on all of the planet gears for the PIE 4.8.

improved outer stops and “Halo” mounts after painting

Halo mount and improved outer stop as seen during setup

I have also improved the mounting (resembling a halo) for the swinging weight. This improvement also allows for the addition of strengthener braces if it is found to be necessary.

Halo Bracket for Swinging Weight

The new stops allow for actual adjustment of the stops. This will allow me to make small changes to stop position and find out if there is a particular “sweet spot” for the outer stop.

Improved outer stop and halo mount working well during SDC setup

The CCW wheel is constructed to run on its own with its own separate motor and speed controller (as seen above). This is necessary to run the full gamut of necessary tests regarding phasing and RPMs. Once these tests are complete there will be better data regarding proper synchronization and whether the two opposing wheels should even be synched at all.

I have posted several videos on my YouTube and BitChute channels showing the building of the CCW and the new PIE 4.8 stops. Here (below) is the new PIE 4.8 CCW running its bench test with the SDC installed.

Here (below) is the first bench test run of the CCW before the SDC was installed.

Here (below) is the PIE 4.8 CCW set on some pipe rollers just to check for backward force (reversion) vs. forward force (thrust).

First Thrust bench Test of PIE 4.8 CCW Assembly

PIE 4.7 Project Continues!

It has been a while since my last update. I guess I kind of went down a bit of a rabbit hole looking for answers to the reversion issues that virtually all inertial drives have. The answers I found are useful, and everything learned has value!

My search took me through the world of compound levers, offset drives and finally to the Tolchin/Shipov drive. The T/S drive taught me the most as it uses some of the same principals necessary in virtually ALL inertial drives, which is adding the 4th “D” (Dimension) to a gyroscopic arrangement.

4D Gyroscopes: Everyone (basically) learned about 3D in grade school. Height, depth and width or in machine shop geometric algebra, X, Y and Z axis or dimensions. The 4th D is T, or time. Time in a spinning gyroscope is measured in RPM, or revolutions per minute. Adding the 4th “dimension” to a gyro is done by rapidly and purposefully changing the RPM faster AND slower, generally within a single revolution.

If you were to view a conventional toy-type gyroscope, you will notice a frame surrounding the flywheel and a smooth-rimmed flywheel in the center. Now, use a marker (pencil or crayon is fine) and put one dot on the rim of the flywheel. That is now our reference point. Place the gyroscope so you can see the entire rim of the frame and the rim of the flywheel. Place a mark on the frame at the top and the bottom as you are viewing it (right and left work too) and then using your finger turn the flywheel rapidly from one mark to the next, then slowly from that mark back to the beginning. That is the 4th D!!!

Imagine spinning the flywheel at 1000 RPM but installing a mechanism that will slow it to 800 RPM for one-half of each revolution, returning it to its original velocity for the other half, and you have a 4D gyroscope!

Now replace the dot on the flywheel with a small weight, and spin it fast then slow then fast then slow with every revolution one-half of it is moving fast and one-half moving slower. It might not be exactly what you desire, but there WILL be inertial propulsion derived from that device!

It is not about shuttling weights around; it is all about changing the “time base” by rapidly changing speeds during EVERY revolution! Shuttling weights can be part of that and quite often they are, unfortunately many people believe that the weight shuttling causes propulsion, when in fact it is only a component of the gyroscope that can be time-manipulated into performing propulsive work. This can be accomplished mechanically or electrically, and although those two systems may appear fundamentally different, they are like the difference between a diesel and a gas engine, they may be “fed” fuel differently and the ignition of that fuel is done differently they are still a piston & crankshaft engine (there are also rotary and turbine but I’m not going there right now).

So, keeping in mind that there are different ways of accomplishing the same basic task, I am back to the PIE 4.7 with a renewed outlook and it is definitely time to “Git ‘Er Done”!

Tolchin/Shipov Drives May Compliment PIE System

As the PIE project continues, I am not blind to reality. There are still many shortcomings to be overcome, forces within the PIE assembly which fight themselves and therefore fight against the very purpose of the PIE. “Reversion” is “anti-propulsion” and it is the bane of all inertial propulsion systems, a primary force to be circumvented as it cannot be eliminated. In the quest for circumvention there is a relatively simple sounding answer known as “redirection”. There is a type of device which has purported to have redirected reversion with good efficiency invented by a Russian named Tolchin and redesigned by another named Shipov. Because this Tolchin/Shipov (T/S) design effectively used redirection within a narrow band of geometric proportions, and because the mechanicals of the T/S drive are less complex than that of the PIE, I have allocated a bit of time and resource to verify T/S drive operation. Assuming the device is verified, a small T/S could be used as an anti-reversion device with the PIE and with other strong impulse drives as well.

Tolchin vs. Shipov: The Tolchin drive was originally fully mechanical with a spring motor and mechanical governors and brakes to build forward momentum and then partially nullify reversion. Once Shipov came into the picture the mechanical controls were replaced with electrical controls. I believe either would be effective, but electrical is easier to adjust and modify so that is the route my experimental work is following at this time.

Tolchin Drive
Shipov Drive

Noteworthy Difference: There is one other noteworthy difference! The Tolchin drive appears to have lacked the precision of the Shipov drive. Watching the videos of the Tolchin vs. the Shipov, Tolchin used one moveable mechanism inside another to lessen the reversion. The inside mechanism moved forward and back “pulling” the main trolly with what appear to be rubber bands. The inner mechanism may also be angled downward slightly to use gravity as an integral part of the cycle. Shipov eliminated these considerations with precise braking control of the rotating assembly.  

The Tolchin/Shipov drive cycle explained:

The T/S drive has 2 halves and they are identical mirror images of each other so I will only focus on 1/2 of the drive. I will be using clock positions of the weights for clarity. The rotation in this explanation will be clockwise to follow the numbers and 12 o’clock is straight forward.

1: At 12 the weight is moving at base speed.

2: At 1:30 (60 degrees) the weight is accelerated to approximately 2X to 3X the base speed (power stroke).

3: At 5:30 (30 degrees from center measured at the bottom) the weight returns to base speed.

4: The weight continues at base speed on around to 12 and starts over.

Since the acceleration force is designed to occur within a 90-degree arc (1/4 revolution), the forward thrust needs to be more than the reverse thrust used in returning the weights to the front. This is simple but stopping the acceleration (accelerated speed) at the exact right moment is critical if the T/S drive is to function!

Shipov Drive Cycle

Current: Right now, the gearing is put together and I am currently powering it with an obsolete cordless drill mechanism. Speed control is accomplished with the same controller being used on the PIE 4.7, including the SDC control.

Current T/S Type Drive Experiment

Problem: The problem with my replica is the weight’s return to base speed is not instant, and because the rotation is still moving too fast (and overshoots the desired slow-down position) the centripetal force pulls in the wrong direction. A brake is needed to quickly (instantly if possible) slow the rotation speed back to base speed. I believe this might be accomplished with a “motor brake” working similarly to a modern cordless drill which stops without coasting when the trigger is released. Another thought is that my weights are too heavy for the older model drill motor to effectively decelerate quickly, and they may need to be replaced with lighter weights.

Gyro, Centrifugal, Centripetal? Shipov called this a “4D gyroscope” where the 4th dimension is time (rotation speed), but it could also be called a “centripetal drive” since thrust is derived by accelerating the weights in an arc toward the rear, and then the centripetal energy is absorbed by reducing speed at the moment the direction is perpendicular to desired motion. Since the mirrored half is doing the same thing in the opposite direction, sideways force is cancelled at both the acceleration point and deceleration point.

Changes Brought About Via Single Wheel Testing PIETECH P.16

***Note #1: This post was created before P.15 so the testing spoken of has been completed already. Read PIETECH P.15 for explanation.***

As I approach and prepare for the next set of propulsion tests for the PIE 4.7, want to note the most recent successful design changes made which do increase power output in the early bench tests performed so far. It should be noted that none of these changes require any input power increases.

***Note #2: I also have had another idea, one that seems so preposterous that I am consulting with a few trusted individuals before revealing it.***

The first three of these four are self-explanatory but we shall touch on them very quickly.

It is a definite power output increaser to:

1… hold the weight in center longer (via guides).

Weight With Guide Attached

2… to be able to adjust speeds on the fly (via speed controller and SDC gain control).

SDC Controller

3… use dead blow weights (stronger & longer pulses without increasing input energy).

Building a Dead Blow Weight

4… use the SDC (counters loading slow-down and increases pulse strength).

SCD Actuator and Micro-Switch

Number 4, the SDC (Speed Differential Control) is a real game-changer, so that is where the focus needs to be for now. Some of the important details & technical notations regarding this are as follows:

1st: The output goes down dramatically if speed is reduced during the “power stroke”. This was discovered when the original belt would slip at times. It stood to reason that if speed decrease was detrimental, an increase could be very beneficial. Mechanical experimentation was performed very successfully by my friend and colleague Tokio using offset (eccentric) gear drives. When he added them to a PIE design (PIE 3.* series) great power was generated, and many components were destroyed by internal forces. Electrically changing speeds is quick and efficient!

2nd: Higher speeds are known to increase power output, but reducing the weight in order to achieve the high speeds was counterproductive. The SDC can momentarily increase the speed higher than necessary to maintain base RPM, simulating a higher speed without adding damaging high loads to the mechanism or increasing input power.

3rd: Adding speed only when required adds to the outward swinging motion of the weight and reducing that speed “could” increase the impact on the outer stop to increase power.

4th: This may me a stretch of my imagination… I believe that the combination of the guide and SDC acts upon the PIE similar to the “Inner Planet Trap” did in the Roy Thornson design. I have to think that instead of speeding up the RPM at the correct moment, Roy was “slowing down” the RPM at the beginning of the power stroke and allowing the RPM to rise in mid-power stroke.

5th: Keeping the electric motor speed low is important as it reduces the overall inertial flywheel effect, allowing faster RPM changes to the PIE’s main wheel (flexplate/flywheel).

Something that can be kept in mind for future experiments would be the utilization of a CNC (think Arduino, maybe) controlled stepper motor and servo system, perhaps with hall effect sensors for feedback, which would virtually eliminate all of the guides, micro switches, gears, and chains. Even the main wheel could just be a straight arm attached to a stepper motor.

Those innovations (if ever used at all) are definitely a long way off in the future, and for now we need to learn to walk before we can learn to run.

Revisiting and Updating the PIE 2.0 into a PIE 2.1, PIETECH P. 14

Because the PIE 2.0 was shelved without any disassembly and was kept in-tact from its last tests and demos, I decided it would be interesting to install the 24-volt electric motor and speed controller on it. It was really great to see the PIE 2.0 spring to life with a renewed vigor thanks to the powerful motor. But this was not the reason for upgrading the version number…

Motor Swapped on the PIE 2.0

Since the motor and speed controller was working so well (on 12v) it seemed natural to add the speed differential control (SDC) to it as well. I started with one actuator, so the PIE would get a speed boost for one half of the rotation which uses two weight pulses per revolution. This would tell me immediately several things. It would indicate if the SDC would be effective on another PIE (repeatability test) and if it would still work with an opposing weight approaching and entering the “neutral/reset” position.

SDC Installed – The PIE 2.1 is Born

Both results were 100% conclusive that the result was a definite increase in power output!

Next was to add a second actuator so the boost would be working with each half of the rotation. A second actuator of identical length (8 inches long) was installed 180 degrees away from the first actuator. Power output seemed very high but because I don’t have a force meter, I simply was not certain. The simple answer was to add a toggle switch in line with the SDC circuit to simply turn the SDC on or off while running the PIE.

PIE 2.1 – With Dual Activators

Results of the dual actuator test was amazing! The base speed could be run from 0 to over 100 RPMs, and the action was the same as it was when running on the drill motor. At different speeds ranging from approximately 30 to 100 RPMs, the differential circuit was activated and deactivated at many different base speeds with very powerful results. Judging only by the amount the PIE was moving the bench I would estimate an approximate 50-75% power increase with the SDC active! THIS is the reason I am calling for the version increase from 2.0 to 2.1 on the older PIE.

As a side-note, the PIE 2.1 runs “smoother” with the SDC, and will probably last longer too!

It is now time to “ramp up” the experimental PIE 4.7 with a second weight, and maybe increasing the mass of the weight(s) to around 2kg. In order to do this mass increase, each weight will be using slightly more than 16 linear inches of 3/8”X2” steel along with the BBs, bushing, bolts and weight mounted guide.

New Dead Blow Weight In Process – Empty Cavity To Be Partially Filled With Steel Shot

As the PIE becomes more “refined”, the total monetary cost of each build increases along with the increase in output power, but when overall quality increases the cost will invariably increase as well.

Videos of the PIE 2.0 changing into a version 2.1 are available on my YouTube channel now, and will also be on BitChute very soon.